Leakage resilience of Blom key distribution scheme

Michal Jastrzębski
University of Warsaw
and
Google Inc.

Stefan Dziembowski
University of Warsaw
and
Sapienza University of Rome
Motivation: Provable security against physical attacks

Information leakage
running time, electromagnetic radiation, power consumption

Goal:
• model such attacks in a rigorous mathematical setting
• and construct schemes secure in this model
Vibrant research area

[ISW03, GLMMR04, MR04, IPW06, CLW06, Dzi06, DP07, DP08, AGV09, ADW09, Pie09, NS09, SMY09, KV09, FKPR10, DDV10, DPW10, DHLW10, BKKV10, BG10, GJS11, LLW11, GR12, DF12,...]

• various constructions

• several leakage models

• provable security
Typical results in this area:

new “leakage-resilient” schemes

“general compilers” – transform any cryptographic functionality into a physically-secure one. (often difficult, high-complexity cryptosystems)

Our approach:
analyze leakage resilience of an existing system. Namely: Blom’s key-predistribution scheme
Plan

1. Introduction to leakage-resilient crypto
2. Blom’s key pre-distribution
3. Our contribution
Examples of “leakage models”

- The adversary can learn the values on up to t wires.
- Probing Attacks

- Bounded-Leakage Model
Another example: split state model
Common tool: randomness extractors

Recall:
\[
\text{ext: } L \times R \rightarrow M \text{ is a two-source randomness extractor if:
}
\text{for } L \text{ and } R \text{ having large min-entropy}
\]

\[
\text{ext}(L,R) \text{ is close to uniform}
\]

(in strong extractors this holds even if one learns } L \text{ or } R).
Min-entropy

$$H_\infty(X) = - \log_2 \max_x P(X = x)$$

Example:

$$H_\infty(X) = a \text{ if } X \text{ is distributed uniformly over set of size } 2^a$$
Fact: leaking λ bits decreases min-entropy by around λ

Since

$$|f(L)| \ll |L|$$

hence:

most likely

$$L' = \{L : f(L) = \text{out}\}$$

is large

where $\text{out} := f(L)$
A popular two-source extractor: the inner product

Let

\[\mathcal{L} = \mathcal{R} = F^n \]

Then

\[\text{Ext}((L_1,\ldots,L_n), (R_1,\ldots,R_n)) := \langle (L_1,\ldots,L_n), (R_1,\ldots,R_n) \rangle \]

is a strong two-source extractor with good parameters.
Plan

1. Introduction to leakage-resilient crypto
2. Blom’s key pre-distribution
3. Our contribution
Key pre-distribution schemes

• a network of devices in a hostile environment
• applications: sensor networks…
• the adversary can capture ("corrupt") some nodes
• goal: establish secret keys
• restriction: no public-key crypto (the devices are too weak for that)
• trusted set-up – allowed
Trivial solution 1

During the trusted setup:
just give every device
the same random key K.

Problem:
the adversary can win by corrupting
just one device.
Trivial solution 2

During the setup:
give every pair of devices an independent random key

Security – much better

Problem: high memory requirements
The situation

“resilience” := number of nodes needed to break the scheme
Blom’s key pre-distribution [Blom82]

For every m there exists a scheme that

- requires memory $m \cdot |K|$
- has resilience m

Diagram:

- Axes:
 - Resilience: $1, 2, n$
 - Memory size: $|K|, 2|K|, n|K|$
- Marked points: (m, m) for $m = 1, 2, n$
Blom’s \((m,n)\)-key pre-distribution scheme

\(n\) – number of devices
\(m \leq n\) – a “threshold”

The setup phase:

1. The server selects random public identifiers \(x_1,\ldots,x_n\) from \(F^m\) that are linearly-independent

He sends them to the devices.
Setup phase – ctd.

2. A random symmetric $m \times m$ - matrix A is chosen.
3. Each party P_i obtains a secret message:

$$y_i := x_i A$$
Key agreement

\[K_{12} := y_1 \cdot x_2 = x_1 \cdot A \cdot x_2 \]

want to establish a key

\[K_{21} := y_2 \cdot x_1 = x_2 \cdot A \cdot x_1 \]

identical since A is symmetric
Security of Blom scheme

Lemma:
The adversary that compromises up to \(m-1 \) nodes does not learn any information about the keys established between uncompromised nodes.

More formally:

\[I(K_{ij} ; \text{secrets of } m-1 \text{ nodes}) = 0 \]

assuming \(P_i \) and \(P_j \) were not compromised
Plan

1. Introduction to leakage-resilient crypto
2. Blom’s key pre-distribution
3. Our contribution
Leakage-resilience of Blom’s scheme

Motivation:

In some situations the adversary can get only partial information about the key of the captured device.
Our model

The adversary can
• learn some keys entirely by corrupting the devices
• leak some information about the other devices (we use the bounded leakage paradigm)
The model

The adversary learns the identifiers x_i and then chooses whom to corrupt and

Without loss of generality assume that the adversary’s goal is to obtain information about:

the key K_{12} shared by and .
An observation

If the **leakage functions** can depend on the identifiers

then

the scheme can be **broken with small leakage**.

Hence:

we assume that the leakage functions are chosen

before the adversary learns the identifiers.
Strengthening of the model

We assume that the parties leak jointly.

The size of the leakage will be denoted λ.
New security definition

A key-predistribution scheme is \((\lambda,k)\)-leakage resilient if for any adversary \(A\)

- with leakage size \(\lambda\)
- that corrupts \(k\) players

we have

\[I(K_{ij} ; \text{what } A \text{ learned}) = \text{negl} \]
Our settings

We use Blom’s \((m,n)\)-key pre-distribution scheme

To achieve leakage-resilience we consider the adversaries that corrupt

\[k < m \]

devices.
The lower bound

If k is too close to m then the leakage-resilience is low.
The optimal bound

Blom’s scheme is \((\lambda,k)\)-leakage resilient with

\[\lambda \approx |K| \Delta^2 / 2 \]

For example if

- \(m = n/2 \) and
- the adversary corrupts \(k = n/4 \) parties

then he can leak in total

\[|K| \frac{n}{32} \]

bits (which is a constant fraction of all the key material)
Proof technique

Our proof is based on the fact that an **inner-product** is a strong extractor.

- Main technical lemma shows that for random vectors X, Y and matrix A, the output of a function
 \[G(X,Y,A) = X A Y \]
 is uniform even if some information about A leaks and one learns X and Y.

Detailed proof can be found in our paper
Thank you!